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ABSTRACT 
 

Measurements of directional response are often used to predict interactions in 
arrays. Implicit in this approach is a simplistic source model with demonstrable 
limitations. The source models can be greatly improved by incorporating the known 
physical attributes of the horns. Example models of horn directionality are presented 
which agree closely with measured data, and which accurately predict array performance.  
 
0  INTRODUCTION 
 
0.1  Standard Practice 
 

The practice of modeling acoustical spaces in software has become commonplace. 
Acoustical modeling programs enable designers to evaluate loudspeaker performance in a 
given space, whether or not the space already exists.  Determinations can be made 
regarding coverage, maximum SPL, intelligibility, preferred source location and aiming, 
and other relevant parameters.  Practically any project warranting the effort of 
constructing architectural models will involve multiple loudspeakers, whether for the 
purpose of achieving adequate coverage or sufficient SPL. A weakness of the modeling 
process is that the calculation of interactions suffers from significant inaccuracy.  

This inaccuracy is not the fault of the modeling programs but rather is inherent in 
the measurement and specification of the loudspeakers. The standard procedure for 
representing loudspeaker directional response is based on a ”black-box” paradigm, 
wherein most prior knowledge of the loudspeaker’s characteristics is ignored. 
Measurements are taken according to standard procedures and faithfully reported as a 
table of data, which affords the data a defensible claim of objectivity. This paper will 
demonstrate that modeling accuracy can be significantly improved by incorporating 
measurable physical parameters into the measurement-and-modeling process – with no 
loss of objectivity. 

Let us consider the physical model inherent in the data table approach. A 
loudspeaker to be measured is placed on a mechanical rotating device, with the geometric 
apex of the loudspeaker as close as practically possible to the center of rotation of the 
turntable [1]. A microphone is then placed at the farthest practical distance, to minimize 
various error mechanisms, including apparent apex  [1], varying microphone distance [2], 
near-field response anomalies, etc. Frequency response is then measured, normalized to 1 
meter, and stored in a two-dimensional table against frequency and turntable angle.  

For a given point in a room, the modeling program determines the ray from the 
speaker’s location to the observation point, and the intersection of that ray with the 
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directional response balloon represented by the data table. It then interpolates the 
sensitivity from the table, and modifies it by the length of the ray (according to inverse-
square law) and by the specified drive signal.  
 
0.2  Directional Point Source Model 
 

The physical model represented by a table of data is a point source with 
directionality. It is simple to implement and adequate to the task of displaying the 
approximate projection of the loudspeaker’s directional balloon into a room. However, if 
it is applied to the task of calculating interference, the model is much less satisfactory. 
Though the interference patterns may be approximately correct for small sources with 
significant coverage overlap, they are not representative when the sources involved are 
large relative to the wavelengths of interest (i.e., directional horns).  

The results can be greatly improved by storing complex data in the table. This takes 
account of the electro-mechanical and propagation delays that occur before the wavefront 
emanates from the supposed point source. It also captures the effect of the source size and 
shape on the measurement. However, it is important to note that a directional-point-
source model is subject to various angular errors and distance-dependence errors, even if 
the data table contains complex measured data [2]. Some of these will be described in 
section 3. 
 
0.3  Tessellated Horn Mouth Model 
 

A tessellated horn mouth model incorporates the known size and shape of a horn’s 
mouth to create a compound source model. Visualize the wavefront emanating from a 
horn as a solid surface covered with a mosaic of simple rectangular-shaped tiles. This is 
an extension of the concept of point-source approximation, but the rectangular tessella is 
much more computationally efficient, and models can be completed quickly, with far 
fewer elements.  

The technique is not new. In two dimensions, it is described in Olson [3, p. 35] and 
referenced to a 1930 Wolff and Malter [4] work. Because each chord (the two-
dimensional version of a tessella) replaces a large number of point sources, the number of 
calculations required is greatly reduced. This was an even more critical issue when 
calculations were performed without computers. Interestingly, the seminal plots of 
directional characteristics [3], [5], which form the basis of our working understanding of 
loudspeaker directionality, were originally calculated with this or the more laborious 
point-source method. 

For tessellation models to be accurate, two requirements must be met. Huygens’ 
Principle teaches that the directional pattern is the same whether the source is a vibrating 
surface or an aperture of the same shape [6]. Consequently, a horn mouth may be 
modeled as though it were a pulsating surface. However, the principle only holds true if 
the particle velocity is normal to the surface. In general, this requirement is met by 
selecting a surface that is equidistant from an original source of sound. This procedure is 
often referred to as Huygen’s Construction [7]. For horn mouth modeling, the shortest 
path from the horn throat should be used to define the surface. 
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A second requirement for this method is that all of the output of the source must pass 
through the defining surface, and propagation away from the surface must be unimpeded 
(free-field propagation); which is to say that the edges of the radiating surface must be 
the edges of the mouth. Unfortunately, this requirement eliminates nearly all subject 
horns because the wavefront they produce does not leave the vertical mouth edges at the 
same instant that it leaves the horizontal mouth edges. The method can be adapted to such 
horns, but in the interest of brevity, only two-dimensional experiments will be presented 
in the current paper.  

Because these models capture the physical extent of a source, a model of multiple 
sources produces valid predictions of interaction, even at observation distances different 
from that of the original measurement. Precise array predictions are possible, as will be 
evidenced below by experimental validation. 
 
 
1.0 MODELING HORN MOUTHS WITH TESSELATION 
  
1.1 Tessellation Defined 
  

Formally defined, a tessellation is a “mosaic - a covering of a geometric surface 
without gaps or overlaps by congruent plane figures of one type or a few types.” The 
term has recently come into common use in the field of computer graphics, wherein 
complex surfaces are graphically rendered by calculating the appearance of each 
individual tessella and displaying its 3-d projection.  For horn mouth modeling, a 
tessellation will represent the wavefront exiting the mouth of a horn. Only rectangular 
tessellae will be employed in this paper, though any source shape with known 
directionality could be used. Fig. 1 illustrates a rectangular tessella. 
 
1.2 Directional Response of Rectangular Tessellae 
 

If a number of point sources are arranged to evenly fill a rectangular planar 
surface, the directional response of the aggregate source may be calculated by adding the 
complex contribution of each source. The calculation is accurate to within 1dB if the 
point-source spacing is smaller than a quarter-wavelength. As the number of points goes 
to infinity, the directional response of the rectangular source approaches a known, 
relativity simple, expression. Unlike the point-source array, this expression has no upper 
frequency limit of validity; and, it can be calculated much faster than a suitably dense 
point-source model.  

The directional response, Rα, of a rectangular source is given in Olson [3, p. 40]: 
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where: 
la and lb are the dimensions of the rectangle 
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α is the angle between the normal to the surface of the piston and the projection 
of the line joining the middle of the surface and the observation point on the plane normal 
to the surface and parallel to la 

β is the same as above, with lb substituted for la. 
 
This formula can be expressed in terms of the sinc function, which is sin(x)/x: 
 

( )[ ] ( )[ ]βλπαλπα sin/sincsin/sinc ba llR ⋅⋅⋅=     (2) 
 
1.3 Tessella Size Requirement 
 

The number of tessellae required for a model is based on the radius of curvature 
of the modeled source. The largest discrepancy between the tessellated model and the 
actual source should be smaller than a quarter-wavelength of the highest frequency of 
interest. Expressed for radius-of-curvature (rc) and highest frequency of interest, the 
maximum allowable tessella dimension is: 

 
fcrl c2max =         (3) 

 
As an example, let’s consider the model for a 1 m – wide, 30-degree coverage, 

high-frequency horn, at 16kHz. The model will require a point-source spacing of no 
greater than 5.4mm (one quarter of a wavelength at 16 kHz). A two-dimensional model 
calls for 186 sources. A three-dimensional model will require about 34000 sources. By 
contrast, a tessellated model will require tessellae of no larger than .289 m, so the mouth 
can theoretically be modeled as four tessellae in two dimensions, 16 tessellae in three 
dimensions. Of course, real horns rarely produce simple arced wavefronts with 
homogeneous source strength and phase. The alert reader will notice that the 
experimental examples use more tessellae than the calculated minimum.  

A tessella source is only valid over its front hemisphere. Applying the equations 
for angles in the back hemisphere produces results that are identical to the front 
hemisphere. Physically, the model does not represent a vibrating disk, since the back 
radiation has the same polarity as the front radiation, and there is no cancellation at 90° 
off axis. Nor, does it represent a pulsating disk with zero thickness, since that would 
require a calculation of the diffracted contribution of the opposite side. Quite literally, it 
is a source model that is only valid over its front hemisphere. Consequently, the valid 
region of a tessellated model is that angle which is in the front hemisphere of all the 
sources. 
 
1.4 Generating a Mouth Model 
  

The goal of this new technique is to define a surface that extends from mouth 
edge to mouth edge and is everywhere perpendicular to the particle velocity. If this 
condition can be met, then simple-source models may be employed [7, p. 215]. 
Otherwise, the source models would have to account for the vector part of intensity, 
which greatly complicates the calculations and is beyond the scope of this paper. For 
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most real horns, this condition can be met easily for a single cross-section, in two 
dimensions. But in three dimensions, very few horns can be modeled with a single 
surface that is both perpendicular to particle velocity and completely encloses the mouth. 
In order to focus on the simplest application of the concepts, the examples in this paper 
will be limited to two-dimensional cases.  

As mentioned earlier, approximate perpendicularity may be assured by selecting a 
surface whose points are all equidistant from the source of sound. In the case of a typical 
horn mouth, part of the surface is defined by line-of-sight to the throat. Near the edge of 
the mouth, the shortest path to the throat is often curved. This path typically runs along a 
sidewall for at least part of the distance. Fig. 2 illustrates a family of equal-distance paths 
for a subject horn. The illustration compares the derived wavefront to a simple arc. The 
lagging of the edges due to the break in the sidewall is apparent. The wavefront entering 
the subject horn is assumed to be convex, so the path was plotted from the geometric 
apex of the walls. If the wavefront entering the horn was known to be flat, the family of 
paths might have been plotted somewhat differently. 

Fig. 3 illustrates the completed tessella model for a real horn of recent design that 
will be used to illustrate the modeling process. The radius of curvature of the wavefront 
varies from .65m near the center to about .3m at the mouth edge. This device is intended 
to be crossed over at 1000 Hz, and has little output above 2500 Hz. By equation 1.1.3, the 
tessellae must be no larger than 100 mm if the model is to be accurate to 2000 Hz. We 
will divide the wavefront into 14 equal parts, resulting in tessellae 60 mm wide. Even 
though the model will only be evaluated in the horizontal plane, we will assign each 
tessella a height representative of the horn’s vertical dimension. 

The last tessella has an aiming angle (azimuth) of 39.5°. The angle perpendicular 
to the tessella is 90° – 39.5° = 50.5°, so this model is valid within the range –50.5° to 
+50.5°. The response outside this region would be partially composed of back radiation 
from some or all of the tessellae. 
 
1.5 Implementing the Model  
  

The model is implemented in a program called FChart. This is an object-oriented, 
Windows-based application written in Visual C++. It is essentially a one-dimensional 
spreadsheet in which all quantities represent complex frequency response functions. The 
response curves are displayed on a standardized graph and can be added and multiplied 
just as real numbers are added and multiplied in a spreadsheet. An FChart document may 
also include acoustical objects, including point sources, circular piston sources, and 
rectangular tessellae. These objects are located in a virtual acoustical space, within which 
they can be positioned and aimed. Each acoustical source is “driven” by a transfer 
function that is expressed as a spreadsheet formula. Several of these acoustical sources 
can then be grouped together as a single compound source, which can itself be positioned 
and aimed, and has its own transfer function formula. The sound pressure at any point in 
the virtual space may be calculated by inserting a microphone object at that point. The 
virtual microphone obtains the complex pressure produced by each individual source at 
the microphone’s location, by equation (2). It then computes the total sound pressure, by 
applying the principle of superposition.  Measured data can also be imported and 
displayed, for comparison to model predictions. 
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 The rectangular sources that represent the mouth model were created in 
AutoCAD, and exported to a DXF file (Autodesk “Data eXchange Format”). FChart 
reads the DXF file and converts any 3DFACE objects it finds to rectangular acoustical 
source objects. By convention, the location coordinates for a rectangular source represent 
the center of the rectangle. The width, height, aiming azimuth, aiming elevation, and 
axial rotation fully describe the physical source and its orientation. Fig. 4 shows a sample 
FChart screen of a tessellation model, with the dialog box for an individual tessella open. 

The computer model is constructed to replicate as precisely as possible the actual 
measurement setup that was used to measure the directional response of the subject horn. 
The origin is defined as the center of rotation of the rotator platform. The tessellated 
mouth model is positioned exactly as the actual device was positioned for the 
measurement. And, the virtual microphones are positioned exactly as the measurement 
microphones were positioned. The frequency response measurements of the subject horn 
are then imported into FChart and are normalized to the axial response. The modeled 
frequency response predictions are similarly normalized, so that the two families of off-
axis curves may be compared. 

Fig. 5 shows the comparison of measured vs. modeled magnitude and phase 
response for 15°, 30°, and 45° off axis. The agreement is within approximately 3dB and 
22° of phase, with the general shape of the curves in very close agreement. This indicates 
that the wavefront model alone captures most of the directional behavior of the horn. 
 
1.6 Optimizing the Model 
 

The wavefront represented by the tessellation is homogeneous in both magnitude 
and phase, while it may be reasonably assumed that the wavefront produced by a real 
horn is not homogeneous. At the very least, the tessellae near the mouth edge would be 
expected to exhibit high frequency roll-off, due to the shadowing of the sidewalls. Also, 
the arrival time might differ slightly from tessella to tessella, due to the approximate 
nature of the tessellation technique. 

Refinements to the model might be contemplated, based on the expected 
diffraction through the horn mouth, and possible deviations of the form of the wavefront 
that entered the throat. It also seems possible that a tessella might be illuminated via 
multiple paths, resulting in multiple impulses. We chose to evaluate and implement these 
and other contemplated model refinements by modifying the tessella driving functions 
(the spreadsheet formulae that modify the contribution of each). A programmed optimizer 
was then given access to the values in the formulae and directed to minimize the 
difference between the modeled and measured off-axis response curves. For the examples 
presented here, it was found that variable gain, delay and low-pass frequency were all 
that were required to achieve excellent agreement with measured data. Fig. 6 compares 
the modeled and measured off-axis response after optimization and Table 1 lists the 
optimized driving functions. Tessellae “A” and “N” are the first and last, respectively: 
tessellae “G” and “H” are at the center of the mouth. Symmetry is forced by applying the 
same driving functions to mirror image tessellae. It will be observed that the modeled 
data matches the measured data to within about 1dB and 10 degrees of phase. 

It should be noted that the phase response was not submitted to the optimizer. The 
precise agreement between measured and modeled phase response is the result of a 
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physical model that closely represents the real device. Phase response agreement can be 
used as a qualifying test for a model. If it isn’t sufficiently accurate, the model should be 
re-evaluated and adjusted. 
 

Table 1: Model Refinements for the Driving Functions  

Tesselae gain (dB) Delay (us)
2nd-order Bessel 

LP f (Hz)

Phase at 
1kHz 

(degrees)
A, N -1.14 19.7 766 -98.7
B, M -2.15 70.5 2371 -58.2
C, L -3.9 57.2 2815 -48.2
D, K -2.3 35.3 1736 -57.3
E, J 0.1 21.2 1708 -52.9
F, I -0.8 0 1414 -54.3
G, H 0.5 2.2 1408 -55.3

 
As expected, the mouth-edge tessellae have significant high-frequency roll-off, 

due to the shadowing of the sidewalls. A smooth progression of delays results until 
reversing at tessellae “A” & “N”. This is surprising until the phase response is 
considered. The phase response of the low-pass filter combines with the phase lag due to 
delay, to produce a smooth progression of phase response across the mouth. 

These results represent the directional behavior of the horn only. All that remains 
to complete the model is to select a driving function for the overall model that matches 
the measured frequency response. After arbitrarily setting the driving function to force 
the 15-degree off-axis curves to be equal, the curve families appear as in Fig. 7. The pairs 
of curves (measured vs. modeled) represent 0°, 15°, 30°, & 45° off axis. 
 
2.0  MODELING ARRAYS WITH TESSELLATION 
  
2.1 A Two-Horn Model 
 

Let us consider an array of two of the horns modeled in Section 1. Within FChart, 
this is accomplished by creating a compound source object from the optimized model of 
the horn. The array of two horns is modeled by duplicating the compound source and 
changing the coordinates and aiming angles of the two horns. A graphical depiction of 
the model is given in Fig. 8. 

Fig. 9 shows the absolute response, modeled and measured, at 0°, 10°, 20°, and 
30°. The agreement between model predictions and measured data is very good. In fact, 
the magnitude of discrepancy is comparable to the unit-to-unit variation of the modeled 
devices.  
 
2.3 Angular Region of Validity 

 
The compound model is valid wherever both individual models are valid. In the 

example, each model is valid from –50.5° to +50.5°. The horns are each splayed 25° from 
the centerline, so the valid regions are from –71° to +25.5°, and –25.5° to +71°. The 
region of intersection is only –25.5° to 25.5°. Note that this region only represents the 
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range over which excellent results can be guaranteed. In practice, we will see that the 
models produce valid predictions considerably beyond the valid region.  

The directional response of an individual tessella in the back hemisphere is the 
mirror image of its directional response in the front hemisphere. So, for example, the 
response at 95° off axis is the same as the response at 85° off axis. However, if the 
tessella is relatively small, its response will be like that of a point source over most of its 
frequency range. The tessella will exhibit directionality only at the upper end of its 
frequency range. At high frequencies, most of the sound pressure in a given direction is 
supplied by the tessellae that are aimed in that direction. The contribution of tessellae 
aimed approximately 90 degrees to the direction is very small. Consequently, the models 
are accurate over a broader range than expected. 

Let’s see how the example models perform outside the known-good angular 
region. Fig. 10 shows the absolute response of a single horn, modeled and measured, at 
0°, 60°, 75°, and 90°. The modeled response at 60° is very accurate down to 300 Hz, and 
within 2 dB below 300 Hz. Significant errors begin to appear at 75 degrees. 

Fig. 10 shows the absolute response of two horns, modeled and measured, at 0°, 
40°, 60°, and 80°. The agreement is very good at 40°. Significant errors begin to appear 
at 60°. If we take -75° to 75° as the valid range for a single horn, then the splayed horns 
in the two-horn model should be valid from -100° to 50°, and -50° to 100°, respectively. 
The region of intersection is -50° to 50°. This correlates well with observation of Fig. 11. 
 
3 CONCLUSIONS 
  
3.1 Benefits 
 
3.1.1 Immunity from Geometric Errors 
 

The data-table approach is subject to several error mechanisms, the most familiar 
of which is apparent apex error [1]. Apparent apex error is defined as the error in the 
computed beamwidth that occurs if the apex of the beam is not at the center of rotation. 
More generally, apparent-apex theory explains the issue of angular errors that are due to 
the finite size of the source. 

A directional-response data table is a record of the response that was measured at 
each of the standard rotator positions. For instance, the data recorded for 45° is the 
measurement that was taken with the rotator turned 45° off axis. As long as we keep in 
mind that the “45°” label represents the rotator position – not the speaker-referenced off-
axis angle, then there is no error in the data acquisition process.  

However, the acoustical path from the source to the microphone was not 45° off 
the axis of the horn being measured; so apparent apex errors occur when a modeling 
program uses the 45° rotator-position data to estimate the 45° speaker-referenced 
response.  Fig. 12 illustrates. 

With a tessellated model, the 45° measurement is only used to “train” the model, 
so that it will accurately predict the response at that microphone position. If the acoustical 
path during the measurement was actually 50° off the axis of the speaker (as in Fig. 12), 
then it is also 50° off the axis of the tessellated model. Rather than referring angles and 
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distances to the rotator center and angle, angles and distances are determined by the 
absolute position and aiming of the individual tessellae. When the far-field response at 
45° is required, the tessellated model calculates it correctly. 

There are two other errors that result from the geometry of the measurement 
setup. A reduction in SPL occurs as the horn mouth rotates away from the [2]. This type 
of error is minimized by employing long measurement distances, and by rotating about 
the mouth of the horn, rather than the apex of the horn walls. Unfortunately, this is in 
conflict with the requirement for reducing apex error at the edge of the beam. 

The other error is primarily of interest for modeling arrays. It has been referred to 
as focal error because it affects the formation of a beam at long distances. The main 
component of phase that governs arrays of sources is the propagation time. For correct 
results, the source location specified in the model must coincide with the point about 
which the source was rotated, for the measurement. Otherwise, the variation of 
propagation time with angle will not match that of the measurement. Unfortunately, 
standard practice is for the source location to represent some identifiable physical detail, 
such as the center of the baffle; which is rarely located at the center of rotation.  

Even if the source is correctly positioned, there is a residual propagation time 
error that results from the angular error. Referring to Fig. 12 and the 45° rotator-position, 
the path from the source to the microphone is slightly longer because of its 5° angular 
error. The path-length error is (path length) * (1-cos(5°)), or about .023 m in this 
example. In the far field, the source’s contribution will arrive 63 microseconds earlier 
than expected. This amount of variation is insignificant for the midrange device in the 
example, but it can be critical for arrays of high-frequency devices [8]. 

Tessellated mouth models are immune to all the geometrical errors described 
above.  
 
3.1.2 Frequency and Angle Resolution 
 

The tessellated model is not strictly a model, because it has been perturbed to 
obtain agreement with measured data. In fact, it is helpful to think of it as “intelligent 
interpolation”, rather than modeling. By using a priori knowledge of the source, we can 
estimate the response between measurement points much more intelligently. For an 
indication of how precise the estimates can be, refer to Fig. 7. This graph depicts the 
predicted and modeled data for 0°, 15°, 30°, and 45°. However, only the 0°, 10°, 20°, and 
30° curves were used by the optimizer. The 15° curve is an interpolated point, and the 
45° curve is an extrapolated point!  

For this example and similar devices, the response for any point within the valid 
angular range can be estimated with accuracy comparable to that of the original 
measurements. Furthermore, the results have the same frequency resolution as the 
original measurements. There has been no smoothing for conversion to fractional-octave-
band data, so calculations of interference can be performed with full frequency 
resolution. The smoothing and conversion to octave-band data is left to the end.  
 
3.2 Limitations and Future Developments 
 
3.2.1 Limited Angular Range 
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The primary limitation of the method is that the tessellation model is only valid 

over a limited angular range. For some applications, this restriction is not problematic. 
We can simply constrain our use of the model to the valid range. However, if the 
technique were introduced, with this restriction, into commercial acoustical modeling 
programs, the utility of the programs would be unreasonably restricted. 

However, the region of the model that is not accurately modeled is actually of 
much less interest than the region that is accurately modeled. We are of course much 
more interested in the performance of the beam of coverage than the back-side spillage. 
One might reasonably build a compound model, which uses the best known method for 
each angle. Within the valid angle, the results would be drawn from the tessellated 
model. Outside the valid angle, the results would be drawn from the next-best 
interpolation method. The modeling results would be no worse than the current standard 
at any angle, and would be significantly improved in the primary coverage beam of the 
device. 

It would also be possible to store multiple tessellation models, each of which is 
constructed and optimized for a different angular range. Due to the lower priority of 
back-axis radiation, however, the extra effort that would be involved is probably not 
warranted. 

The most desirable course of improvement is to extend the unified model with 
consideration of diffraction and shadowing. Research is currently under way to develop 
practical techniques for modeling horn walls and edges.  
  
3.2.2 Geometrical Requirements 
 

The technique, as described here, is only applicable to symmetrical devices, due 
to the requirements stated in section 1.3. And of course, we have only treated 2-
dimensional cases in this paper. The process can be extended to 3-dimensions and 
asymmetrical devices through one of several approaches. The approach selected will 
depend on the characteristics of the particular device under test. A second paper is 
contemplated, which would address various 3-dimensional approaches. 
 
3.2.3 Diffraction and Shadowing, Modifying Functions 
 

Differences between predicted and measured array response may be attributed to 
various factors, all of which result from the introduction of an additional source. There 
may be reflections and diffractions off of, or shadowing by the adjacent structure. The 
mutual coupling of the sound sources may change their individual contributions. And 
there may be a baffling effect, wherein adjacent structures reduce the back-radiation of 
the first source and affect it’s acoustical loading. In the Loudspeaker Arrayability 
Research Group (LARGE) proposal by AES working group SC-04-03, these effects are 
referred to as modifying functions. 

The example related here was for a “good horn”, which was specifically designed 
to array well. Less-well-behaved horns might require more complex modeling. 
Furthermore, the array that was examined followed “best practices” for arraying horns. 
The sources were tight-packed, mouth-edge to mouth-edge, so there was no obstruction 

10 



of line-of-sight to the horn mouths. Consequently, the effects of shadowing and 
reflections from adjacent devices are negligible. That these effects are negligible was not 
an up-front assumption, but was determined by specific experiments.  

First, a single horn was measured. Then the measurement was repeated with a 
second horn placed next to it, but not driven. The difference between the two 
measurements was always less than 0.3 dB. By subtracting the response with the adjacent 
horn present from the response without the adjacent horn, a residual response was 
calculated. This residual was more than 25 dB down at all frequencies. To evaluate 
mutual coupling issues, the horns were placed together and measured individually, then 
with both horns driven. Then the sum of the individual horn measurements was compared 
to the measurement of both. There was never more than a 0.2-dB difference.  

These measurements were all made in the known-valid angular range. It is 
reasonable to assume that, further off axis, diffraction and reflection will become 
increasingly significant. If the technique is extended to the back hemisphere, then of 
course shadowing will also become significant. Furthermore, other types of sources such 
as direct-radiators and smaller horns are more interactive, and it is very possible that 
modifying functions would be required to obtain sufficient accuracy, when modeling 
arrays of these devices. 
 
3.3 Applications 
 

The modeling techniques described in this paper were developed to support the 
arraying and processing of three specific loudspeaker systems. In all three cases, only the 
vertical directionality was an issue with regard to processing; so there was no need for a 
three-dimensional model. Also in all three cases, the various sources are aimed in 
approximately the same vertical direction; so the valid angular region for the array is not 
much smaller than that of an individual device. The purpose of the modeling is to 
optimize the performance within the intended coverage pattern, so the valid angular range 
is more than adequate. 

In the case of the first system, array calculations were a necessity arising from the 
goals of the design. In order to obtain a 12-dB increase in high-frequency projection, five 
to eight horns are packed tightly together, and then processed separately – so that a useful 
beam-shape may be formed. Likewise, an array of three or six mid-frequency horns is 
processed to produce a beam matching that of the high-frequency array. The technique 
for deriving the signal-processor settings utilizes the same program, FChart, and is 
described in detail in [9]. Because the measurement process used for the mid-frequency 
and high-frequency sections cannot resolve sufficiently low frequencies, a tessellated 
model is used for the low frequency section. Once the tessellation technique has been 
proven for asymmetrical sources, it will be applied to the entire system. At that point, the 
modeling process will become part of a computer control system, which users will 
employ for on-site calibration and adjustment of the system. 

The second system is a portable concert speaker that is deployed in curved 
vertical arrays. It differs from the other applications described here in that its rigging 
system allows the selection of small angular increments. Using a complete tessellation 
model of all three sections, optimal rigging angles were determined for various numbers 
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of cabinets and shapes of venues, and optimum signal-processor settings were developed 
for each configuration.  

The third system is a three-way, coaxial loudspeaker in a single cabinet. In its 
most common configuration, these cabinets are “dead-hung” (all boxes level) 1 to 5 rows 
high, typically with a down-tilted version of the cabinet in the bottom row. FChart 
modeling has been used to optimize the transition from the standard cabinet to the down-
tilted cabinet, as well as for evaluating new array designs and their applicability to 
unusually shaped venues. 
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Fig. 1:  Rectangular Tessella Nomenclature 
 

 
Fig. 2: Lines of equal distance (Huygen's Construction) 
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Fig. 3: Tesselated Mouth Model 
 

 
 
Fig. 4: FChart Tessellation Model Interface 
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Fig. 5: Measured Response vs Un-Optimized Mouth Model (15°, 30°, and 45°). 
 

 
 
Fig. 6: Optimized Model vs. Measured Directional Response (15°, 30°, and 45°). 
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Fig. 7: Optimized Model vs. Measured Absolute Response (0°, 15°, 30°, and 45°). 
 

 
Fig. 8: Two-Horn Model, made up of two Compound Sources 
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Fig. 9: Modeled vs. Measured for array of two horns (0°, 10°, 20°, and 30°) 
 

 
 
Fig. 10: Single horn model, outside valid angular range (0°, 60°, 75°, and 90°). 
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Fig. 11: Two-horn model, outside valid angular range (0°, 40°, 60°, and 80°). 
 
 

Fig. 12: Angular and Distance Errors 
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