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ABSTRACT

The modeling technique presented in Part 1 is extended to three-dimensional
space through the use of a flat tessellation of the horn mouth. This is made possible by a
more complete version of the Kirchoff-Helmholtz integral, which is applicable to a
surface of arbitrary shape. The three-dimensional technique is effective with
asymmetrical devices, and produces better agreement with measurements at low
frequencies and at angles near and beyond 90° off axis.

0 INTRODUCTION

0.1 Tessellation Method Presented in Part 1

In “Improved Loudspeaker Array Modeling” (Part 1), presented at the AES 107"
Convention in New York, a new method of modeling horn directionality was presented,
which incorporated the known size and shape of the horn [1]. By constructing the
wavefront emanating from a horn as a mosaic of tiles, called tessellae, the directional
response of a horn could be accurately represented. One tessella replaced many point
sources, so the model was very efficient, computationally.

The examples in that paper employed rectangular tessellae, characterized by their
length, width, rotation, elevation, and azimuth. Working in a three-dimensional CAD
program, a presumed wavefront was constructed by developing a curve that was
equidistant from the original source of sound (Huygen’s Construction [2][3]). In the case
of horn modeling, the shortest path from the horn throat was used to define the surface.
A second requirement was that all output from the source had to pass through the
defining surface, and propagate unimpeded thereafter. This requirement can only be met
if the edges of the tessellation model coincide with the edges of the mouth.

The surface, as defined, was tiled with a number of rectangular tessellae, and their
physical descriptions were transferred via data exchange format (.dxf) file to a
specialized modeling program. The software model was constructed to precisely match
the measurement setup that was used to obtain the directional response of the subject
horn. The directional response of the software model, represented by a family of
complex frequency-response curves, agreed surprisingly well with the measured data.
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In order to improve the agreement further, a “driving function” for each tessella
was adjusted. The driving functions included gain, delay, and low-pass filtering, which
allowed the wavefront shape to be fine-tuned, and allowed the model to account for
throat beaming and high frequency shadowing due to bends in the horn walls. A
programmed optimizer adjusted the driving function parameters, to achieve the best
possible match between modeled and measured data. After modeling a single horn, the
same technique was applied to arrays of horns, with equally good agreement between
modeled and measured results.

Tessellation proved to be a promising technique. The method was free from
apparent apex errors, and there was no distance variation or focal error if the source was
not positioned at the center of rotation. Tessellation also proved to be fully inclusive —
interpolated results matched just as closely as the “training curves”. Once a model was
built and “trained,” full resolution data could be obtained at any angle in the valid range.

Unfortunately, the tessellation technique had some limitations. Because the
model for an individual tessella is front-to-back symmetrical, the accuracy deteriorates as
the point of observation is moved beyond 90° off the axis of one or more tessellae.
Furthermore, the angular region of validity was smaller for arced arrays of loudspeakers,
because the splaying of the sources caused the backs of more tessellae to “come into
view.”  More importantly, the physical requirements, as defined by Huygen’s
Construction, only allowed a two-dimensional model because the wavefront most horns
produce does not leave the vertical edges of the horn at the same instant that it leaves the
horizontal edges. It was impossible to construct a 3D mosaic that satisfied the
tessellation conditions. The models also showed less-than-measured directionality at low
frequencies, and were limited to symmetrical horns.

0.2 An Improved Method: Flat Tessellation

In the current paper, we present a refinement of the tessellation technique that largely
eliminates the problems mentioned. Instead of placing the tessellae in an arc along the
presumed wavefront, we will arrange them in a flat plane at the mouth of the horn.
However, flat tessellation, as shown in Fig. 1, violates Huygen’s principle — the condition
that all the sources must lie within a common wavefront.
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Fig. 1. Wavefront Tessellation vs. Flat Tessellation

In order to be released from Huygen’s Principle, the tessellae must be represented
by a more complete acoustical model. The formula used to model the off-axis response
of a rectangular tessella [4] is the analytical solution of Rayleigh’s Integral [2] for a
rectangular aperture. Rayleigh’s integral is a simplified form of the Kirchoff-Helmholtz
integral, which will be discussed at some length below. By employing the complete
Kirchoff-Helmholtz integral, we can model a wavefront passing at an oblique angle
through the tessellae, more accurately model the low-frequency off-axis response, and
accurately model the response over a much broader angle.

1 THE KIRCHHOFF-HELMHOLTZ EQUATION
1.1 Analytic Form of Equation

The Kirchhoff-Helmholtz equation is a member of the family of equations known
as Boundary Integral Equations (B.1.E.’s). The formula is the mathematical realization of
Kirchoff’s theorem, which states: "If either the pressure or the normal particle velocity is
known over an arbitrary surface surrounding a source, the acoustical field due to that
source can be calculated at any given point in space [2][5][6]."

In "Loudspeaker Acoustical Field Calculation with Application to Directional
Response Measurement,” by Gunness and Mihelich [6], the Kirchhoff-Helmholtz
equation is derived in various forms appropriate to different applications. The complete
frequency-domain equation is:
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P i@, (xs)e ™ 1 1Y B(XS) e
p(x)_M” S +E”(eR-ns - Jkr o] oreds (1)

where:
S is an arbitrary surface completely enclosing all sources of sound.
Xs IS any point on the surface, S.
X is any point outside the surface.
er is the unit vector from Xs to x.
R is the distance from xsto X.
ns is the unit vector normal to the surface at Xs.
v, (Xs) is the normal velocity at various points, Xs , on the surface.
P(x,) is the pressure at various points, Xs, on the surface, and
o 2xaf

k=22
c c

These terms are depicted in Fig. 2.

sound source

Fig. 2. Definition of Kirchhoff-Helmholtz Equation Terms

Kirchhoff’s Theorem states that by integrating the pressure and velocity over the
entire surface, the pressure anywhere outside the surface can be determined. Of course, in
order to make practical use of this expression, we will need to represent the surface as a
finite number of tessellae.

The most general form of this equation contains two main parts: a term containing
the velocity, and a term containing the pressure. However, velocity and pressure cannot
be specified independently. Given one parameter, there is only one valid value for the
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other parameter. It will be most convenient if we restate velocity in terms of pressure. As
given in [6],

~

G, (X) = —(cos Op(X) — —(n, - Vp(x)) @
pC jk

Vp(x) is the pressure gradient. The dot product with the normal vector gives the

normal component of the gradient — a scalar. Likewise in the first term, cosO gives the
normal component. Notice that the velocity has a real term and an imaginary term. The
real part is independent of the shape of the field — giving the same result for a plane wave
as it does for a spherical wave. The imaginary term goes to zero in a plane wave, and is
very large near the origin of a spherical wave.

Substituting (2) into (1) yields:

1 | ikp(xs)cosd  jkp(xs)(eg *ns)  P(xs)(eg -ns)  cOSOVAMX) | e
p(X)=EH{ > o pe S e S (3)

Bringing “jk” out of the integral will clarify the roles of the various terms.

ik ppl Blxs)cosd  P(xs)er ns) | B(Xs)(eq ng)  cosOVAMX) | e
p(x)—E“{ - + - + KR’ + iR e *dS (4)

This equation has four terms that can be analyzed separately.
p(x) = i—kﬁ[Term1+Term2 +Term3+Term4k**dS (5)
T

1 p(xs)cosd

Term , is the high frequency, monopole (omnidirectional) term

resulting from the real part of the normal velocity. This is the term that constitutes the
Rayleigh integral. For far-field analysis of a rectangular tessella with propagation normal
to the surface, the entire term can be moved outside the integral. The remaining double
integral contains only e, If we set the limits of the double integral to the dimensions of
the rectangular source, we have a definite integral which is easily solved - giving the
expression reported in Olson (a product of two sinc functions) [4].

2, ﬁ(xs )(eR 'ns)
R

Term , is a high frequency, dipole term resulting from the

pressure distribution over the surface. The dot product, e;-ns, can be expressed as cose,
where ¢ is the off-axis angle of the observation point. Its value is 1 at 0° (on axis), zero
at 90°, and -1 at 180°. This directional behavior is described as a figure-eight polar
pattern.
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Term 3, p(xs-)(eR 'ns)
jKR?

the pressure distribution over the surface. For high frequencies, 1/k approaches zero. For
large distances, 1/R? becomes small in comparison to 1/R. For horn mouth modeling,
this term is typically negligibly small. However, its similarity to term 2 makes it very
inexpensive to calculate (Term2/jkR), so there is no reason not to incorporate it in
numerical methods.
cos | VP(x)|

JKR

imaginary part of the normal velocity. It is often referred to as the divergence term
because it is only non-zero in a divergent field, such as that near a point source. A
complete treatment of this term requires consideration of the diffraction around the
perimeter of a horn. It has a negigible effect on directionality, because it has the same
form as Term 1, which is already larger than Term 2 at low frequencies. It does, however,
have an effect on the absolute pressure response at low frequencies, so it cannot be
ignored if pressure measurements at the mouth are to be used to predict far-field low
frequency response. In the technique being explored here, we will be forcing the on-axis
response to match an axial measurement, so the term can be ignored without much effect.
See [6] for a more thorough discussion.

Let us consider the effect of the additional terms, intuitively. One difference
between the new and the old tessella is that an individual new tessella will contribute
very little in the reverse direction. If 6 is zero (normal propagation), terms 1 & 2 exactly
cancel at 180° off axis. Note that the output of the overall model doesn’t go to zero — just
the contribution of that one tessella. Another effect is that the contribution of terml
typically varies across the mouth of a horn (the inclination angle is zero at the center and
non-zero at the edge), while the contribution of term 2 varies with observation angle.

, Is a low frequency, near field, dipole term resulting from

Term 4, , iIs a low frequency, monopole term resulting from the

1.2 Numerical Implementation of the K-H Integral

In order to apply the K-H integral to a numerical method, it will have to be
converted to a summation. The technique of tessellation can be expressed as:

p(X)=Z[%[cos¢9p +(eq '”s)+%}ffﬁ(xs)e“dydz} (6),

This is a summation of the n tessellae that comprise the surface. The expression
within the parentheses represents the analytic solution for an individual tessella. The
expression within the square brackets represents the part of terms 1, 2 & 3 that are taken
as constant over the surface of the tessella (term 4 is ignored, for the reasons discussed
previously). The double integral is presented in the form for a rectangular tessella that is
y»-y1 wide, and z,-z; high. It can be converted to represent a tessella of any shape, by
selecting suitable variables and limits [reference — possibly Rayleigh]. For instance, a
round tessella can be represented by replacing “dy dz” by “r dr d6”, and setting the limits
to [0, r] and [0, 2x]. The pressure distribution function, p(x,), is left inside the integral,
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because its phase will vary over the surface of the tessella if the propagaion direction is
not perpendicular to the surface.

The original tessella, as defined in Part 1, was defined by its length, width,
rotation, elevation, and azimuth. In order to implement the more complete K-H integral,
we will need to specify the direction of propagation, e,. The angle between e, and ns, the
unit normal to the surface, is the inclination angle, 6. Besides the cos6 term in Eq. (6), the
inclination angle also affects p(x,), in the double integral. A new expression for p(x)

is:
o _ A alk(yd-y+20-7)
P(X,) = P,e i ),

in which @ is the vector representation of the propagation direction relative to the
tessella, with X representing the axis of the tessella direction, Yy representing the unit

horizontal direction of the tessella (along its width), and Z representing the unit vertical
direction of the tessella (along its height).

When this expression is applied, the evaluation of the double integral takes the
same form as for a simple tessella: the product of two sinc functions; but the argument to
the sinc functions is modified. The horizontal and vertical off-axis angles are simply
reduced by the horizontal and vertical propagation angles. This satisfies the obvious
requirement that the narrowest impulse must occur when the propagation direction is
directly toward the microphone.

2 EXAMPLE OF FLAT TESSELLATION
2.1 Example Horn

In [1], a single mid-frequency horn was measured and its directionality was
compared to a tessellated model. Agreement between the modeled and measured
response was roughly within 3 dB and 22° of phase for 15, 30, and 45 degree curves.
After optimization, the agreement was roughly within 0.5dB and 10° of phase. Using the
more complete implementation just described, the same horn can be modeled with a
complete three-dimensional planar tessellation. Both horizontal and vertical directional
response may then be obtained from the same model.

2.2 Horizontal Model

A horizontal model was developed, by employing the methodology described in
Part I, but with flat tessellation, the more complete K-H integral, and with the driving
functions adjusted for offset delay & estimated pressure. The offset delay for each
tessella corresponded to the path difference between the Huygen tessellation and the flat
tessellation. The estimated pressure is based on the total area of the wavefront at the
section where the tessella resides. In both cases, the intent was to set the driving function
to the complex pressure response we would expect to measure at the center of each
tessella. By contrast, a Huygen tessellation starts with equal pressure and arrival time.

AES 109th CONVENTION, LOS ANGELES, 2000 SEPTEMBER 22-25 7



David W. Gunness and William R. Hoy Improved Loudspeaker Array Modeling, Part 2

The flat tessellation is shown in Fig. 1. Fourteen 0.4064-m-tall tessellae were
used. Their widths ranged from 0.0717 m for the outer column, to 0.048545 m for the
inner column. Fig. 3 compares the measured and modeled directionality responses at
15°, 30°, 45°, 60°, & 75° off axis.
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Figure 3: Modeled Vs. Measured, Unoptimized; 15°, 30°, 45°, 60°, 75° Off Axis

All five off-axis curves are comparable to the agreement of the raw model of Part
1. However, the new method achieves these results out to 90°, whereas the previous
method was only accurate to 45°. Furthermore, the low frequency agreement is much
better than before, even without optimization. After optimization, the results are even
better (Fig. 4). Whereas the previous method produced a 6dB error at 250Hz, 90° off
axis, the new method is accurate to within 0.1dB at 250 Hz.

AES 109th CONVENTION, LOS ANGELES, 2000 SEPTEMBER 22-25 8



David W. Gunness and William R. Hoy Improved Loudspeaker Array Modeling, Part 2

10

al
A
1]

%‘ﬁ- i

Cre A

——
= ¥
el ri
b gy =4 B

.,
"\‘ - Fi

-10 4 T
- Fud

% =y

L

-20

-30

10 20 30 Al 100 200 300 A0 1000 2000 3000 5000 10000 20000
Fig. 4. Modeled Vs. Measured, Optimized; 15°, 30°, 45°, 60°, 75° Off Axis
2.3 Vertical Model

Repeating the process, a vertical model was constructed. For this case, eight
0.7112-m-wide tessellae were used. Their height ranged from 0.07105 m for the upper
and lower row, to 0.060782 m for the middle row. This tessellation is shown in Fig. 5.
The comparison between modeled and measured curves is shown in Fig. 6.

Fig. 5. Vertical Flat Tessellation
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Fig. 6. Vertical Modeled Vs. Measured; 15°, 30°, 45°, 60°, 75°, and 90° Off Axis
2.4 Three-Dimensional Model

In order to build a three-dimensional model from the horizontal and vertical
models, A complete tessellation is developed, as shown in Fig. 7. Then, the driving
function for each tessella is initialized by using the corresponding horizontal and vertical
driving functions from the optimized horizontal and vertical models. The dimensions of
each tessella comprise a fraction of the total width, and a fraction of the total height. The
corresponding horizontal driving function is multiplied by the tessella’s vertical fraction,
and the corresponding vertical driving function is multiplied by the tessella’s horizontal
fraction. When constructed in this way, the three-dimensional model produces the same
results as the two-dimensional models in the horizontal and vertical planes.

For rectangular horn mouths, the results away from the horizontal and vertical
planes (i.e., on the diagonals) will still show excellent agreement. Even so, the accuracy
of the model can be further improved by applying the optimization process to the
complete, 14 x 8 model. The agreement of the unoptimized three-dimensional model is
shown in Fig. 8.
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Fig. 7. Three-Dimensional Flat Tessellation
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Fig. 8. Three-Dimensional Flat Tessellation Comparison (Along a Diagonal)

3 APPLICATIONS OF FLAT TESSELLATION
3.1 Automated Directional Response Measurement, by Mouth Mapping

The process described in Section 2 is primarily a synthesis process. A model
synthesized from the geometry of a horn is able to predict with surprising accuracy the

AES 109th CONVENTION, LOS ANGELES, 2000 SEPTEMBER 22-25 11



David W. Gunness and William R. Hoy Improved Loudspeaker Array Modeling, Part 2

detailed directional behavior of the horn. The value of this process in development work
should be obvious. A horn can be evaluated with a simple software model before a
prototype has been constructed. With a prototype in hand, measured data may be used to
refine the model — yielding data with sufficient precision for array predictions.

Let us consider a further refinement of the technique; one which is useful for
characterizing the directional behavior of an existing horn. Rather than relying on an
optimizer to adjust the driving functions of the tessellae, the pressure at the center of each
tessella can be measured, using the real horn. The optimizer may then be applied to the
remaining estimated values (primarily propagation angle). Alternatively, a closely-spaced
set of data points can be measured in order to determine the propagation direction by
measurement.

The technique of measuring the pressure over the surface of the mouth is called,
“mouth mapping.” It is particularly useful in the case of less well-behaved horns —
particularly those in which the high frequency beam is narrower than the included angle
of the walls. It also offers the potential of being realized as an automated process, since
the detailed CAD work can be skipped. The complex hemispherical polar response can be
obtained with very high precision, requiring far fewer measurements than would be
required in the far field. The data obtained also lends itself to highly efficient numerical
techniques such as the Fourier Acoustics approaches presented in [7].

3.2 An Array-Prediction Application - A “Steerable” Vertical Array of Horns

A large-scale loudspeaker system has been developed, which employs a large
number of individual horns and drivers [8]. The directionality of the vertical horn arrays
was intended from the outset to be electronically controllable, by changing the digital
signal processing applied to each element of the array. Determining the processing
required to obtain the required directional consistency and musicality, however,
necessitated a very involved process — a task that could not easily be transferred to the
end user.

The modeling process described here has been applied to the task of predicting
the response of these large arrays, with good success. While the earlier methodology was
very effective in predicting the off-axis response, relative to the on-axis response [ref],
considerable field work was required to obtain the desired absolute response from the
system. The new technique offers much better absolute predictions. In addition, the new
technique correctly accounts for the varying distance from various parts of the array to
nearby listeners. Fig. 9 and Fig. 10 illustrate a portion of the array and show a typical
family of response predictions, post-optimization.

A complete set of models has been constructed for the various subsystems in the
illustrated array. Work is currently underway to incorporate these models into a
programmed interface, which will allow the user to optimize the digital signal processor
settings and provide directional predictions for use in acoustical modeling programs, such
as EASE.
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Fig. 9. Large-scale Loudspeaker System Employing Many Horns
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Fig. 10. Example PPST Family of Curves
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4 CONCLUSIONS
4.1 Benefits of New Technique

In Part 1 of this paper, a modeling technique called tessellation was introduced.
Unlike the conventional data-table approach, it offered complete immunity from various
geometric error mechanisms such as apparent-apex error, produced highly accurate
interpolations, and allowed accurate prediction of array interactions.

In the current installment, an improved modeling technique was presented, which
allows a horn mouth to be modeled by a flat tessellation. By incorporating all four terms
of the Kirchhoff-Helmholtz integral, a diverging wavefront may be accurately modeled
with a planar array of source elements. The new technique is more accurate at low
frequencies. It retains its accuracy to 90° off axis. And, it can be used to create a single
three-dimensional model, rather than separate horizontal and vertical two-dimensional
models.

The previous technique relied on Huygen’s principle, and consequently, could not
be applied to asymmetrical horns. Because the new technique handles non-normal
propagation, it is not necessary for the wavefront to leave both edges of the horn mouth
simultaneously. Therefore, asymmetrical horns can also be modeled with no loss of
precision.

4.2 Future Improvements - Back Hemisphere Modeling

The full K-H tessella differs from the simple tessella employed in Part 1 in that its
pressure contribution is valid even at 180° off axis from the tessella. However, the
overall horn mouth model is not valid in the back hemisphere, because the paths from the
tessellae to observation points in the back hemisphere are obstructed by the walls of the
horn. Any sound pressure in the back hemisphere must diffract around the edges of the
horn.

The edge diffraction, then, supplies the broad-band frequency response in the
back hemisphere. What is probably less obvious is that edge diffraction also affects the
low-frequency response in the front hemisphere. The velocity portion of the K-H integral
was estimated, based on the geometry of the horn. But, as we mentioned in Section 1.1,
we have ignored term 4 - the gradient term. We have used the horn geometry to estimate
the wavefront expansion. But near the edge, the horn geometry underestimates the
wavefront expansion. The amount of this underestimation is easily calculated, but is
somewhat tricky to define in the model specifications. The question must be answered,
"Which edges of which tessellae are mouth edges?"

We have identified a technique, which we will call "picture-framing", for defining
the edge conditions of a horn mouth or baffle edge. With this technique an object is
defined which is best described as a picture frame. When the response is desired at a
location that isn't "visible™ from the mouth of a horn, the picture frame object will
calculate a diffracted signal, derived from the tessellated model. Low-frequency
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divergence will also be calculated from the picture frame specification - so the absolute
response predicted in the front hemisphere will be correct.

When two or more horns are arrayed, another larger picture frame will be created
which contains the smaller picture frames which contain the tessellated mouth models. In
this way, the back hemisphere radiation should be fairly accurate - even for large arrays.
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