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ABSTRACT 
 
The traditional method of predicting the acoustical field produced by an arbitrarily shaped 
source is a high frequency, angle-limited reduction of the Kirchhoff-Helmholtz equation.  The 
broad band, broad angle version of the Kirchhoff-Helmholtz equation is derived, and 
implemented as a numerical method. Acoustical field predictions of real sources developed 
with this method agree closely with measured data. This agreement even extends to low 
frequencies and angles near and beyond 90 degrees off of the primary axis. Applications of the 
technique are described, including a powerful and efficient directional response 
characterization method. 

0 INTRODUCTION 

"Point source approximation" is a phrase that has been common in the audio engineering field 
for over 100 years. In the decades leading to the publication of Theory of Sound, Part 2, in 
1896 [1], Lord Rayleigh sought to evaluate the directionality of an aperture in a "plane 
screen." Certain simplifying assumptions were necessary to reduce the equations to a solvable 
form. Rayleigh assumed that the pressure magnitude and phase were both constant across the 
aperture, and that the "directivity pattern" could be assessed by treating the source aperture as 
an array of simple point sources. The solution to this simplified problem had already been 
demonstrated in the field of optics. 

Sixty years later Harry Olson published Acoustical Engineering [2], including numerous 
graphs of "directional characteristics." The data for these graphs were generated using 
Rayleigh's procedure, and have come to be accepted as gospel by practitioners in the field - 
despite the fact that real devices differ from these approximations in important ways.  

While Rayleigh's simplifying assumptions were expedient and warranted in 1896, there is no 
longer any reason to perpetuate them. The computing power available on every engineer's 
desktop is more than adequate for solving these problems numerically in their complete form. 
The necessary equations, known as Kirchhoff-Helmholtz (K-H) Integrals, are well known in 
other branches of acoustics and are presented authoritatively in general acoustics textbooks 
[3,4,5]. While point source approximations suggest the general directional characteristics of 
real devices, they consistently err in sometimes surprising ways. 
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Our work in this area was motivated by a desire to capture the complex directional behavior of 
horns, to be used in predicting their interactions. A paper delivered at the 107th A.E.S. 
Convention, Improved Loudspeaker Array Modeling by Gunness & Hoy [6], presented a 
promising technique for capturing a horn's behavior with a tessellation of its mouth. In order to 
improve the accuracy of this method and allow it to be extended to three-dimensional space, 
we needed to consider the full K-H Integral. A new installment of that paper, Improved 
Loudspeaker Array Modeling - Part 2 [7], presents an expanded technique based on the full 
equation. 

As the details of tessellation with the full K-H Integral became clear, we realized that the 
technique could also be useful as a general directional characterization process. The 
predominant form of measurement and modeling of commercial loudspeakers is a simplistic 
data-table procedure. This process is rife with error mechanisms and pitfalls; all growing out 
of its assumption that the far-field response is an attenuated and delayed version of the 
"medium-field" response. A measurement process based on a tessellated sphere would be 
immune from all of the error mechanisms that have been identified.  

The spherical measurement technique will be dealt with briefly here, and the horn modeling 
technique is dealt with in depth in [6,7]. The primary focus of the current paper is to present 
the full K-H Integral in detail, including its application to tessellation.  

1 THE KIRCHHOFF-HELMHOLTZ INTEGRAL EQUATION 
 
Kirchhoff's scalar diffraction theory "uses Green's theorem to express a scalar field inside a 
closed volume, V in terms of the values of the field and the normal derivative of the field on 
the boundary surface, S." [8] The scalar field, p(x,t) is to have harmonic time dependence and 
is to satisfy the Helmholtz wave equation inside V.  

Green's theorem is given by Equation 1. 
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G is the free space Green's function, G(x,x′) satisfying Equation 2, and p is the scalar field, 
p(x,t). 
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The free space Green's function is given by, 

jkReRG 1),( −=′xx      

the gradient of this Green's function is, 
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Substituting these values into Equation 1 gives Equation 3. 
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Figure 1: Definition of Terms 

 

In Equation 3, the integration is carried out over an arbitrary surface, S, enclosing the sources 
and another surface, S∞ that can be taken to be "at infinity."  Since the fields in this problem 
are taken to originate inside a surface that completely encloses the sources as shown in Figure 
1, all waves are outgoing towards S∞. The Sommerfeld radiation condition is then applied - 
that the wave must vanish at least as fast as the inverse of the radius, as the radius goes to 
infinity.  It can therefore be assumed that the integration in Equation 3 is carried out only over 
the surface, S, containing the sources. The Kirchhoff-Helmholtz Integral Theorem is the result 
and is presented as Equation 4. 

( ) ( )[∫∫ ⋅−+∇= dSRjkppe
R

p SRSS
jkR nexxx 1)(ˆˆ1

4
1)(ˆ
π

]      (4) 

This equation is used to predict the spatial pressure response based on a pressure and normal 
pressure gradient map of a surface, S. Since the pressure gradient is proportional to velocity, 
pressure and its gradient may not be specified arbitrarily. For one pressure field there exists a 
unique velocity (pressure gradient) field related by radiation impedance. 
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1.1 The Gradient Term 
 
Other useful forms of this integral may be derived that are appropriate for specific 
applications. As a measurement tool for instance, one may wish to measure the spherical polar 
response of a loudspeaker and use that spherical data to create a tessellated model of the 
mapped surface. One may also wish to use a form of Equation 4 that is better suited for horn 
synthesis or analysis. Both of these applications are examples where tessellation would be 
used. A form of Equation 4 that is useful for tessellation is presented in Equation 5. This 
equation predicts the pressure at any point in space from a single tessella. The θx and θy terms 
in Equation 5 represent the horizontal and vertical wavefront curvature in terms of the 
included angle of each arc. The low frequency divergence can be derived in terms of the 
included angles, and the propagation angle, θp. 
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For the spherical measurement technique, a simplified method may be used in circumstances 
when the source is reasonably close to the center of the measurement sphere. This form is 
presented as Equation 6 where rd is the radius of the measurement sphere. 

∫∫ ⎥
⎦

⎤
⎢
⎣

⎡
++⋅= dS

kr
jpe

R
p

d
SRS

jkR 1)()(ˆ1
4
1)( nexx
π

      (6) 

1.2 Illustrative Examples 
 
It is instructive to show practical applications of the Kirchhoff-Helmholtz Integral. Interesting 
examples that cannot be solved correctly using traditional methods can be solved using this 
method. Direct radiating low frequency devices can be modeled more accurately than with 
point source methods. A point source within a spherical surface will be used as a 
demonstration of a simple case that is incorrectly represented by a point source approximation, 
but correctly represented by the full K-H integral.   

1.21 Directional Response of Low Frequency Devices 
 
The K-H integral will predict the off axis response of direct radiating loudspeakers at 
moderately low frequencies with greater accuracy than the traditional method. Measured data 
exhibits approximately 6dB more attenuation at 90° off axis than the point source method 
predicts. The full K-H integral predicts an off-axis response that agrees with measurements. 

Looking at the individual terms of the K-H integral gives insight into why this happens. The 
first term constitutes the "point source approximation", and is a monopole term resulting from 
the velocity. The second term, which includes SR ne vv ⋅ , is a dipole term resulting from the 
pressure distribution. When added to the monopole term, it yields a cardioid pattern. There is 
also a low frequency term that eventually transitions the cardioid response to a monopole 
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response at very low frequencies, and a near field term which is negligible for distances which 
are large compared to the individual tessella dimensions. 

The traditional method would predict directional response based on the monopole term only, 
giving low-frequency results that are known to be approximately 6dB in error at 90° off axis. 
While the new method still does not provide exact results in the back hemisphere, it does 
provide very precise agreement with measured data over the front hemisphere. 

1.22 Point Source Centered in a Sphere 
 
It is common to assume that a far field prediction point can be taken as a delayed and 
attenuated version of a measured medium-field response in the same direction. This 
assumption is only true for a point source located at the point of rotation. Since all real sources 
have finite dimensions, the assumption is rarely valid in actual practice. The magnitude & 
phase response will be affected by various geometrical error mechanisms (discussed in 
Section 3), and the phase response will be progressively more errant at points away from the 
original measurement point.  The Kirchhoff-Helmholtz integral theorem teaches how to solve 
these problems: we must integrate the complex pressure over a complete surface surrounding 
the source.  

As a simple example of the concepts presented thus far, consider a sphere of radius R 
surrounding a point source of unity strength1 located at the center of the sphere. The pressure 
will be constant over the surface of the sphere.  Suppose now that the nature of the source is 
unknown. The pressure on the surface of the sphere will be used to predict the pressure at a 
point, xo, in the space outside the sphere.  

Using traditional point source methods for modeling the sphere, the pressure calculated for xo 
will be incorrect. This can most easily be illustrated by the impulse response calculated at xo, 
which is shown in Figure 2a. In addition to the expected impulse arrival from the front of the 
sphere, a second impulse arrival is predicted, which originates at the far side of the sphere. 
This result is obviously incorrect.  

                                                           
1 The source has been low-pass filtered to broaden the pulse for improved clarity in Figures 2a,b, & c. 
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Figure 2a: Impulse Response of Spherical Source - Velocity Term 
The full K-H integral has two additional terms that eliminate this discrepancy. The dipole term 
produces the impulse response shown in Figure 2b. Its leading impulse is identical to that of 
the monopole term, but its trailing impulse is inverted (because SR ne vv ⋅  is -1 at 180°).  When 
the dipole term is added to the monopole term, the trailing impulse is cancelled - leaving only 
the expected impulse (with its magnitude doubled) and a wide, rectangular, negative going 
impulse.  

 

Figure 2b: Impulse Response of Spherical Source - Pressure Term 

The divergence term produces the impulse response shown in Figure 2c. This term perfectly 
cancels the negative-going rectangle which is part of the monopole term.  The net response is 
the expected perfect impulse. 
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Figure 2c: Impulse Response of Spherical Source - Divergence Term 

1.3 Tessellation 
 
The derivation of Equations 4-6 is useful for the prediction of the acoustical field produced by 
a single tessella. To be useful in practical applications, a surface must be tessellated. 
Application of this technique is a boundary element method that requires the surface2 to be 
divided into geometrical shapes creating a mesh. The most common surfaces are the sphere 
and the finite plane. The most common geometrical shapes to create the mesh are the 
rectangle, the trapezoid, and the triangle.  

Taking Equation 5 as the master equation for tessellation and applying it to a tessellated 
surface yields a sum of surface integrals. Each surface integral represents a single tessella on 
the surface that can be of arbitrary shape and size and can have any complex pressure 
distribution across it. This summation, presented as Equation 7, must be numerically 
implemented and solved by a computer. The summation here is over the n tessellae that make 
up the complete surface. 
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The result is a complex pressure that is solved for a single point in space and a single 
frequency. This greatly reduces computation time, it is not necessary to calculate pressures 
over a complete surface as in the Fourier [5] nor boundary element methods or a complete 
volume as in finite element methods [9].  

1.3.1 Tessella Directivity Equations 
 
The standard equations that describe the radiation pattern from a planar source [2,10] are 
based on the assumption that wave propagation is normal to that source. While this is a valid 

                                                           
2 In this context the surface is defined as the surface over which pressure measurements were made. 
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assumption for many wave problems, there are instances when we wish to include non-
uniform distribution of magnitude and/or phase on the surface. In addition, the literature 
describes only rectangular and circular surfaces. It is also desired to introduce tessellae that 
can take the shape of an arbitrary trapezoid3 to improve results when tessellating surfaces such 
as spheres. 

1.3.2 Non-normal Propagation Through a Tessella 
 
Including non-normal propagation in the tessella model requires a reconsideration of 
Rayleigh's integral [3,5] using a non-uniform complex pressure distribution over the surface of 
integration. While the magnitude can be taken as constant, the phase varies linearly (pure 
delay) over the surface of the tessella. This represents a tessella with non-normal propagation 
angle, pev  through the surface. This system can be represented by Equation 8. If the magnitude 
were to vary over the surface, additional terms would be required.    

))((ˆ)(ˆ 0 xeyex vvvv ⋅+⋅= pp zyjkExppp        (8) 

Using Equation 8 leads to a slightly different directivity formula from that of a simple 
rectangular surface as presented in Olson. For the rectangular surface with skewed 
propagation per Equation 8, the directivity pattern is given by Equation 9. 
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In Equation 9, my and mz are the slope of the plane in the y and z directions respectively, the 
normal of which is in the direction of propagation, xv . Referring to Figure 1, ye vv ⋅= Pym  and 

. ze vv ⋅= Pzm

It may be desirable to represent spherical variations in arrival time, for tessellating a sphere or 
representing a curved wavefront. Using this method eliminates the problem of concentrated 
high frequency beams on the axis of each flat tessella. To account for wavefront curvature, we 
once again adjust our expression for the complex pressure over the tessella: 
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We know of no closed-form solution to the resulting Fourier integral. Consequently, the 
expression must be numerically integrated.  
                                                           
3 A triangle is a reduction of the trapezoidal equation. 
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1.3.3 The Trapezoidal Tessella Equation 
 
As mentioned above, it is useful to define a non-rectangular tessella to aid in the tessellation of 
non-rectangular surfaces. When tessellating a sphere for instance, triangles are useful near the 
poles. Trapezoids are also necessary to avoid overlap on spheres. A single equation describes 
the normal radiation through a rectangular, triangular or trapezoidal tessella. Equation 11 
results from the application of the two-dimensional Fourier Transform of this surface. 
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This equation allows complete flexibility to create any trapezoidal source by simply 
substituting values for the line equations, 11 bxmy +=  and 22 bxmy += , that define the non-
parallel sides. The most commonly needed sources do not require as much flexibility as 
Equation 11 allows. Tessellation of a sphere for instance requires only isosceles triangles and 
isosceles trapezoids. 

2 APPLICATION TO LOUDSPEAKER MEASUREMENT 
 
The Kirchhoff-Helmholtz integral theorem gives us a methodology for predicting the far-
field pressure given a mapping of the near-field pressure. The acquisition of pressure over 
a completely enclosing surface is not a trivial exercise, but one that has already been 
undertaken by most professional loudspeaker manufacturers in order to obtain spherical 
response data. In the case of horns, the mapping need only cover the mouth of the horn, 
since the acoustic output of the back surface of the horn can be taken to be zero. 
Characterization of horn directionality is covered in some detail in [5,6]. 
 
For a completely enclosing mapping surface, an obvious choice is a sphere. Two 
potential applications of spherical sampling are evident: Broad-band, high precision 
directional response characterization, and high-resolution low-frequency response 
measurement in reflective rooms. 
 

2.1 Directional Response Characterization 

Traditional loudspeaker measurement techniques give a spherical polar response of the 
loudspeaker under test with some angular resolution (usually 5°). The resulting data table can 
then be used in modeling programs to predict the response of the loudspeaker in a room.  The 
process is fraught with errors, as documented by Ureda [11] and Gunness [12]. A tessellated 
spherical model, on the other hand, is immune to geometric errors.  
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2.1.1 Geometric Errors 

Geometric errors result whenever the size of a source is significant relative to the microphone 
distance. If the apex of the walls of a horn do not converge at the point of rotation, the shape of 
the polar magnitude response will be distorted. Furthermore, even if the apex is at the point of 

rotation, there will still be an apparent apex error when the horn is rotated beyond its coverage 
angle. Any source of finite extent is subject to these geometric errors. Careful placement of the 
loudspeakers cannot solve this problem, since the apexes of the horizontal and vertical 
sections rarely coincide.  In fact, the effective location of the apex may change with frequency.  

Figure 3: Geometric Errors  

2.1.2 Phase Response  

Recently, polar phase response has received considerable attention [13], as practitioners desire 
to examine the combinational behavior of loudspeakers. The various geometric errors have 
been discussed in the literature in terms of their effect on magnitude response, but it should be 
obvious that these errors also affect the phase response. In fact, phase response is much more 
sensitive to geometric errors than magnitude response. With a measurement distance of 6 m, a 
0.72 m distance discrepancy is required to produce a 1 dB magnitude error. However, for 
accurate array calculations at 8 kHz, the arrival path must be accurate to within about 10 mm. 

2.1.3 Interpolation Errors 

Interpolation errors arise when modeling software requires the response at a point in space 
where no measurement was taken. If 5° resolution data was obtained and a 12.5° response is 
requested, interpolation must take place. Since nothing is known about the source other than 
its response at the sample angles, the modeling program cannot necessarily interpolate the 
complex response correctly. The problem is particularly severe when the arrival time varies by 
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1/2 period or more from one sampled point to the next - a condition that is not unusual at high 
frequencies. When this occurs, interpolation is problematic due to the wrapping of the phase.  

With a tessellated model, on the other hand, there are no "interpolated" observation positions - 
since the response at any point depends on all the tessellae.  

2.1.4 Variation of the Speed of Sound 

The speed of sound varies by 1% if the temperature varies by about 6°C.  In order to obtain 
measurements of disparate loudspeakers at 6 m with an arrival time accuracy equivalent to 10 
mm of propagation (allowing interference calculations at 8 kHz), the temperature would have 
to be controlled (or recorded) within 1°C. Clearly, the shorter the measurement distance, the 
less sensitivity there will be to environmental variations. If the temperature is recorded at the 
time of measurement, a tessellated model can be used to make accurate predictions of 
interactions between loudspeakers measured under different atmospheric conditions. 

2.2 Low Frequency Response in Reflective Rooms 

The problems associated with obtaining accurate low frequency response in reflective rooms 
are well known. Near-field measurements minimize the effect of reflections from nearby 
surfaces and give the approximate shape of the low-frequency response. A method originated 
by Keele [14] uses the enclosure's internal pressure response and volume to estimate the 
power response of a direct radiating woofer. However, both of these methods negate the 
directionality of the source, and neither is effective for bass horns. 

A near-field spherical pressure map may be obtained by measuring an elevated loudspeaker. 
This minimizes the effect of nearby surfaces (e.g., the floor). Using the tessellated model to 
calculate the far-field response then accurately accounts for source directionality. The result is 
the best-possible estimate of far-field anechoic response. 

3 CONCLUSIONS 
 
The Kirchhoff-Helmholtz Integral was proposed as a practical and powerful replacement 
for the traditional point source approximation. Several forms of the equations were 
presented, each appropriate to a different use.  
 
Several applications of the equations were presented, including loudspeaker synthesis, 
measurement, and modeling.  The calculations are more involved than the traditional 
method, but are well within the capabilities of current desktop computers.  
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